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Outline: This lecture covers security of blockchains. We first explain the Adversarial model, and
then give a definition to security of the blockchain; in the end, we use the adversarial model to
analyze security of the consensus layer with regard to a special attack, private chain attack.

6.1 Adversarial model

In the adversarial model, there are two types of nodes. Honest nodes are blindly following all
rules specified by a designed protocol, and the rest of the nodes are called adversaries who can
do whatever actions desired for them. For making the adversarial model more concrete, we state
the adversarial action space in the following axes:
• where to mine blocks: adversary can decide to mine at any height of the ledger
• what to put inside blocks: adversary can put any transactions inside any blocks
• when to broadcast blocks: adversary can choose any time to release its blocks
• network delay control: adversary can deliver a block in arbitrary orders within (t, t+ ∆)

Since the consensus layer relies on services provided by the P2P layer, we need clarification about
the P2P properties before accurately defining the adversarial action space. We assume P2P en-
ables ∆-delay broadcast property: if a block reaches some honest nodes at time t, then the block
reaches all honest nodes before t + ∆, where ∆ is a fixed delay time. When the network delay
control attack is used for a block generated at time t, adversaries can arbitrarily decide the de-
livering time of the block to any honest nodes before the block is eventually seen by all honest
nodes at time t+ ∆. In summary, adversarial model defines powerful adversarial nodes who can
freely decide any actions contained in the space, and such powerful model is useful because a
large space contains more adversarial situations in the real world, and therefore our protocol is
more useful if it can tolerate those harder conditions.

6.2 Security: Safety and Liveness

Traditionally, the security of a distributed system consists of two properties: Safety and Liveness.
Safety is also called persistence, which means any transaction confirmed by an honest node will
remain confirmed in all future. A system with only Safety property can sometimes be useless.
For example, a system is useless to anyone if it stops accepting any new blocks after the genesis
block is created by an honest node. This requires us to think of another useful property, Liveness:
any honest transaction will eventually be confirmed. For example, if a transaction from an honest
node is rejected by some adversarial nodes, the honest node should be able to resend the transac-
tion to all other nodes until it gets confirmed. In addition to Safety and Liveness, a new property
useful to the blockchain but ignored by the traditional definition is called Fair order: Fair order
requires the order of transactions to be consistent to their arrival time. For example, there is a
valuable paint sold for a fixed price in the system, it would be unfair if Bob gets the paint by cut-
ting in line after many buyers already sent their transactions. Security (=Safety + Liveness) gives
no guarantee on the relative order in the final ledger. In the following sections, we are restricted
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to the traditional security definition. We will discuss Fair order and its precise meaning later in
the course.

6.3 Private chain attack

Adversary can conduct any attacks contained in the Adversarial model, in this lecture we focus
on a specific attack considered in the original bitcoin paper: Private chain attack. A private chain
attack is pictorially summarized in Fig 6.1, where there are two chains coming from the genesis
block, and all blocks in the chains are labeled by their height after the genesis block. Blue chain
are created by honest nodes and its ledger are visible by all nodes in the network; red chain is
created by adversarial nodes who secretly mine and chain the blocks together. The private chain
attack is successful if and only if there exist a ` ≥ k such that an adversary mines ` blocks before
honest nodes mine their ` blocks, where k corresponds to the k-deep confirmation rule. We will
analyze the consensus security in two situations: without and with network latency ∆. But before
that, let’s characterize the mining process using tools from probability.

Figure 6.1: Private Chain attack

6.3.1 Model for mining

The event of successfully mining a block can be characterized by a geometric random variable
which measures the number of Bernoulli trials for reaching one successful event. This model is
reasonable because every hash computation can be considered as a Bernoulli trial with probability
of success matching its mining power; and in practice, the mining uses a pseudo random gener-
ator SHA-256 which generates independent outputs as good as a real random source. A unique
character of the geometric random variable is the memoryless property: the distribution of the
waiting time until the next successful block does not depend on how much time has elapsed in
the past. When the time slot becomes extremely small, a geometric random variable converges to
an exponential random variable with the mean equals to 1

λ , where λ is the block generation rate
with a unit of (blocks per second). A counting process {N(t), t ≥ 0} represents the total num-
ber of events that have occurred up to time t (detailed definition see [1]). Because the number
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of blocks in a chain can be modeled with a counting process, {N(t), t ≥ 0} and the interarrival
times in the counting process are independent and identically distributed exponential random
variables, the height of a chain follows a Poisson process. Going forward, let’s use the notation
T hi be the mining time of an honest block i ≥ 1, with an underlying exponential random variable
with rate λh; similarly, let T ai be the mining time for adversaries with rate λa.

6.3.2 security without network delay

We are interested in the event E` when an adversary mines ` blocks before the honest nodes mine
` blocks, which can be written as E` = {

∑`
i=1 T

a
i ≤

∑`
i=1 T

h
i }. To further simplify the equation,

let’s define a new random variable Di = T hi − T ai , and E` = {
∑`

i=1Di ≥ 0}. The probability of

the event is hence Pr [E`] = Pr
[∑`

i=1Di ≥ 0
]

= Pr
[

1
`

∑`
i=1Di ≥ 0

]
. The expected value of Di is

expressed as,

E[Di] = E [T h − T a] =
1

λh
− 1

λa

If λh < λa, then E [Di] > 0, the attack succeeds with high probability, because in expectation
adversary launches the private attack by mining more blocks. We now focus on the other case
λh > λa, and use Chernoff bound to derive an upper limit on the probability of E`

Pr [E`] = Pr

[
1

`

∑̀
i=1

Di ≥ 0

]

= Pr

[∑̀
i=1

Di ≥ 0

]

= Pr

[
s
∑̀
i=1

Di ≥ 0

]
; note that s > 0

= Pr
[
es

∑`
i=1Di ≥ 1

]
≤ E [es

∑`
i=1Di ]

= E [Π`
i=1e

sDi ]

= Π`
i=1 E [esDi ] ; as Di are independent

s is a parameter greater than 0. The inequality in the fifth line comes from Markov Inequality:
If X is a nonnegative random variable, then for any a > 0, Pr [X ≥ a] ≤ EX

a . Its proof is fairly
straightforward.

Proof.
E[X] =

∑
i

iPr [X = i] ≥
∑
i≥a

iPr [X = i] ≥
∑
i≥a

aPr [X = i] = aPr [X ≥ a]
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To compute E [esDi ],

E [esDi ] = E [esT
h
i e−sT

a
i ]

= E [esT
h
i ]E [e−sT

a
i ]

=
λh

λh − s
λa

λa + s

The last equation is just integration. For example, E[esx] =
∫
λesxe−λx dx = λ

λ−s . Therefore for all
s > 0

Pr [E`] ≤ Π`
i=1(

λh
λh − s

λa
λa + s

) = [
λh

λh − s
λa

λa + s
]`

By our assumption λh > λa, and let’s set s = λh−λa
2

Pr [E`] ≤ [
4λhλa

(λa + λh)2
]`

One can prove 4λhλa
(λa+λh)2

< 1 if λh 6= λa

Proof.

(λa + λh)2 − 4λhλa = λ2
a − 2λhλa + λ2

h

= (λa − λh)2

> 0

Therefore
Pr [E`] ≤ [

4λhλa
(λa + λh)2

]` = [e−c]`

where c has the form
c = 2 log(λa + λh)− log(4λaλh)

So far we upper bound the probability that adversary mines ` blocks faster than honest nodes
mines ` blocks. Now we upper bound the probability that adversary is ever faster than honest
nodes for any ` > k by using union bounds

Pr [private chain attack is successful] = Pr [∃` ≥ k : E` happens]

= Pr [∪∞`=kE`]

≤
∞∑
`=k

Pr [E`] ; union bound

=

∞∑
`=k

e−c`

=
1

1− e−c
e−ck

Once the private chain attack is successful, all honest blocks can be deconfirmed; so safety prop-
erty no longer holds. For avoiding such attack under λh > λa, we can increase the confirmation
depth k, until the probability of a successful attack becomes extremely small.
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Figure 6.2: Top: Honest mining process with latency, where the red cross is a block excluded
from the blockchain due to forking. Bottom: A censored mining process, where the red line is the
silencing period

6.3.3 security with network latency ∆

With network latency ∆, two(or more) randomly mined blocks may arrive to the network within
the ∆ time, and create a situation called forking where only one of the blocks is confirmed in the
chain. One of the time domain realization is depicted in Fig 6.2. Because two(or more) arrivals
within ∆ only has one block confirmed in the chain, we model the new process by manually
silencing a ∆ duration right after a block is mined, so a new block can only be generated after
this period, shown in the bottom part of Fig 6.2. To compute the rate for each arrival in the
new censored process, we need to consider both the silencing part and the mining part. The
silencing part is simply ∆; since the mining event is a memoryless exponential random variable,
the distribution for it to mine a block after waiting the ∆ period is still exponentially distributed.
Hence it can be expressed as (with reuse of notation from previous section)

E [T h] = ∆ +
1

λh

Hence the rate of growth of the honest chain is adjusted to 1
E [Th]

= λh
1+∆λh

in the unit of (block per
sec). We can view the ∆λh as a penalty factor due to forking. Continuing our security analysis for
the delayed network, we first need to make sure event E` does not happen in expectation, which
translates to

E[T hi ] < E[T ai ]

∆ +
1

λh
<

1

λa

λa <
λh

1 + ∆λh

The security condition for the system is λa < λh
1+∆λh

, and we can apply the similar analysis in
the previous section to show the probability of a successful private chain attack deceases expo-
nentially in relation to k if the security condition holds. Taking bitcoin as an example, suppose
network latency is ∆ = 10 sec, the honest mining rate λh = 1

600sec , the new non-wasted honest
power is λh

1+∆λh
= λh

1+10/600 = λh
1.0166 . Therefore if we use a large k, the system is secure if

λh > 1.0166λa

Another way to describe the relation is via fraction of adversarial power β = λa
λa+λh

. In the bitcoin
case, the system is secure with a large k when β < λa

λa+1.0166λa
= 0.495. In the next lecture, we will

visit other types of attacks.
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