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Outline: This lecture first specifically address the problem of ”Nothing at Stake Attack”. Then

we introduced ideas from the Ouroboros protocol aiming to minimize the nothing-at-stake attack.

Finally we start the discussion of Nakamoto block which aims to close the gap of system security

performance when the adversary fraction β is in the interval 1
3 ≤ β ≤

1
2 .

14.1 Recap

In the last lecture, we looked at several alternatives to proof-of-work mechanism, like proof-of-

stake, proof-of-space, etc. and we focused on the proof-of-stake(PoS). The core concept in PoS is

the leadership certificate(L.C.), which is required to create a new block:

H(Prev.L.C., pk, t) < threshold ∗ stake(pk) (14.1)

14.1.1 Equivalent Question

One way of thinking about the equivalence of leadership certificate if that once we’re given the

previous L.C. and a public key, can we calculate the earliest time t0 that we can mine a new block:

given {Prev.L.C., pk} → earliest time t0 to mine a new block (14.2)

There are two major differences in these two equivalence:

1. Eq.14.1 assumes exponential interarrival process while Eq.14.2 assumes general interarrival

process.

2. Eq.14.1 is more relative to a ”mining” process where nodes try to mine one block at each

time stamp. Eq.14.2 can immediately ”know” when to get a new block from a single evalu-

ation. Therefore, the second idea can be used for implementing PoS efficiently.
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Lecture 14 14-2

14.2 Nothing at Stake Attack

In here, we still assumes the ”static stake” prerequisite, where all public keys and their stake are

defined in the genesis block and do not change.

While honest nodes mine only at tip of the longest chain, adversarial nodes can mine on all pre-

vious leadership certificates, i.e. instead of forming a chain, adversaries can form a tree structure

and try to outrun the honest chain. This is called the Nothing-at-stake attack.

Figure 14.1: Nothing-at-stake attack

Note that in Proof-of-Work mechanism, if you want to mine blocks simultaneously on other

blocks, you’ll have to split your mining power between them. But, in Proof-of-Stake case, you

will not splitting your stake since stake is already defined at genesis. For example, if you had

30% stake in total, you’ll have 30% stake on every block you mined on therefore you can mine

multiple blocks simultaneously. In addition, adversaries benefit greatly from the independent

randomness of mining anywhere on their tree, so they are highly likely to grow faster than the

honest chain.

14.3 Ouroboros / Snowwhite Protocol

These protocols have very similar properties and they are all aim to minimize the Nothing-at-

stake attack.
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14.3.1 Specify Behaviors of Different Nodes

Recall that Eq.14.1 define the equation that all nodes need to follow. Different nodes tend to

behave different at time stamp t under this protocol. For honest nodes, they only try to achieve

Eq.14.1 with Prev.L.C. corrsponding to the tip of the longest chain. However, for adversarial

nodes, they try to achieve Eq.14.1 with all Prev.L.C. as all previous blocks to see how they can

maximize the chance of creating a new block.

14.3.2 Idea-1

The main idea is to reject blocks whose time is too old relative to current block:

t(block) < t(clock) + γ → Rejection (14.1)

Issues with this idea:

1. The parameter γ is highly dependent on the assumption of the rate of chain growth. How-

ever, this is not a big deal since we can always have a good estimation of the rate of chain

growth or we can regulate that rate.

2. A much more severe problem is the ”divergent view” problem. For example, an adversary

can have time a block at the boundary so that half of the honest nodes will accept this block

while the other half will deny it. Therefore, these two half of nodes will have different view

of longest chain and will never agree on each other. An extreme scenario of this is called

”network partition”:

Figure 14.2: Network Partitioning
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Honest nodes are partitioned into two groups N1 and N2 with no connectivity, and both of

them will have its own view of chains. After network mixes, if it were Bitcoin protocol, ev-

erybody will accept the longest chain, but in here, two parts will not agree on each other and

therefore split forever. Therefore, this idea is not robust to network asynchrony(partition).

14.3.3 Idea-2

The second idea is to just simply remove the Prev.L.C. term in the mining equation:

H(pk, t) < threshold ∗ stake(pk) (14.2)

In previous Eq.14.1, when we have Prev.L.C. we can only attach current L.C. to the previous

leadership certificate, but now we can attach the leadership certificate anywhere.

14.3.3.1 Validity of Leadership Certificate

1. In the L.C. chain, time stamps should be monotonically increasing.

2. The timestamp should be earlier than time of current clock

3. Hash condition satisfied

Recall the three-layer structure of PoS protocol, L.C can be floating independently, but header

chain and block chain can still connect to each other and form a chain structure. Therefore when

we’re talking about the L.C. chain, we’re actually talking about the header chain and regard the

two L.C. on these two connected headers as connected also.

14.3.3.2 Specify Nothing-at-stake Attack In This Case

Under this setup, this looks like a different Nothing-at-stake attack compared with what we have

seen earlier.

1. For honest nodes: they grow a block at tip of the longest chain at time t

2. For adversary nodes: if they create a block at time t, they can attach it everywhere on the

existing structure.
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Figure 14.3: NaS attack

14.3.3.3 Full Proof

Full proof means we try to show security under all sorts of attacks. In here, we still assumes that

we have network delay ∆ = 0

Suppose we have the following two chains:

Figure 14.4: Two-chains Example

Note that under zero-latency scenario, there exists at most one honest block at the same level,

therefore the total number of adversary blocks across two chains is greater than the number of

honest blocks.
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Since you can reuse the same leadership certificate across the two chains, but cannot reuse it

inside the same chain due to validity condition, the number of adversary blocks in a chain is less

than the total number of adversary slots (denote a leadership certificate as a slot). Therefore, total

number of adversary blocks across two chains is less than twice the number of total adversary

slots, which leads us to the following inequality:

2 no. adv. slots ≥ no. adv. blocks ≥ no. honest blocks = no. honest slots

=⇒ 2 no. adv. slots ≥ no. honest slots

=⇒ 2 adv.stake ≥ honest stake

(14.3)

Recall that we use β to represent the fraction of adversary mining power in PoW. Similarly, we

can use β in PoS to represent the fraction of adversary stake. Therefore, we have the condition for

an attack:

2β ≥ 1− β

=⇒ β ≥ 1

3

(14.4)

Now, we can be sure that when β is greater than 1
2 , the system will not be secure, while when β is

less than 1
3 , the system will be secure:

Figure 14.5: Fraction of Adv. on System Security

Right now, we need to deal with the gap between 1
3 and 1

2 , and there are two ways to close this

gap:

1. Show attack when β ≥ 1
3

2. Show security when β ≤ 1
2 , which is the strategy of Ourobros protocol using methods called

”Forkable Strings”
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14.4 Nakamoto Block Convergence Method

Next, we’ll introduce an alternative method for closing this gap mentioned previously, which is

also called ”Everything is a race” method.

14.4.1 Blocktree Partitioning

Figure 14.6: Blocktree Partitioning

The first key idea is called ”Blocktree Partitioning”. In general, we have a block three T (t) which

is comprised of many different honest and adversarial blocks (All colored blocks are adversarial

blocks) For every block in the tree, you search for the most recent honest block that it is a descen-

dent of. Then we can perform blocktree partitioning on T (t) just like the right part of Figure 14.6

shows.

Generally, we are just viewing the blocktree in a different way. We break off the honest blocks,

line up all of them on a single chain, which is called ”fictitious honest chain”. For adversarisal

blocks, we retained how they are connected to each honest block and organize them as a tree with

the honest block as the root.

14.4.2 Nakamoto Block

Based on the blocktree partitioning idea introduced above, we can then introduce the second key

idea: the Nakamoto block. Recall that in blocktree partitioning, adversarial trees are growing

on top of each honest block while the fictitious chain is also growing over time. We first define

several notations:
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Figure 14.7: Nakamoto Block

1. τi: Birth time of honest block i

2. Di(t): Depth of the tree rooted on honest block i at time t

3. Ah(t): Length of the fictitious honest chain at time t

Then, we have the following definition:

Def.: In fictitious honest chain, a block i can never catch up with block j iff.

i+Di(t) < Ah(t) ∀t ≥ τj (14.1)

This means that after τj time, honest block growth always wins the race between its competition

with the adversary block growth.

On basis of the definition, we can then define the concept of Nakamoto blocks:

Def.: Hj is a Nakamoto block iff. none of the previous blocks can ever catch up.

From the definition of Nakamoto block, we can derive a theorem:

Theorem:

If Hj is a Nakamoto block ⇒ Hj remains in longest chain ∀t ≥ τj (14.2)

This theorem will be proven in the next lecture, and we can come to a conclusion that we can

ensure system security property if there exists a Nakamoto block every now and then in the

chain.


