
ECE 595: Foundations of Blockchain Systems November 4, 2020

Lecture 11

Lecturer: Sreeram Kannan Scribe: Soubhik Deb

Outline: In this lecture, we first discuss a type of commitment structure called Merkle tree and

its use in blockchains to construct light nodes. Then, we discuss decoupled validity and data

availability problem that are introduced due to usage of Merkle tree in blockchains.

11.1 Commitment Structures

Consider a collision-resistant hash function H(.). Suppose Alice has a data item D1 and she

evaluates H(D1) which she presents it to Bob. This H(D1) will serve as a commitment of Alice

to the data item D1. This is because, due to H(.) being a collision-resistant hash function, Alice

can’t later on get a new data item D2 such that H(D2) = H(D1) and tell Bob that she committed

to D2. Extending this further, suppose Alice has m data items

D1, D2, · · · , Dm

and Alice wants to commit to all these data items. There are two possible schemes:

• Scheme 1- hash the concatenation of the data items, i.e., H(D1, D2, · · · , Dm), or

• Scheme 2- concatenation of the hashes of the data items, i.e., H(D1), H(D2), · · · , H(Dm).

Now, the question is what are the trade-offs between these two possibilities? For that, we define

two properties under which we will distinguish the two possibilities:

• Commitment size- the size of the commitment

• Proof of membership- amount information that is needed to be provided by Alice to Bob,

in addition to data item, so that Bob can verify that the data item corresponds to the com-

mitment made by Alice previously.

Assume that each of the m data items is of size S and output of the hash function is of the size

H . For scheme 1, Alice will just need to provide H(D1, · · · , Dm) which is of size O(1)H whereas

for proving its membership, Alice has to provide all the m data items. On the other hand, in

Scheme 2, Alice would be providing H(D1), · · · , H(Dm) to Bob, which is of size mH but for

proof of membership, Alice has to provide hash of only one data item which is of size S. Ideally,

11-1

Lecture 11 11-2

we would like to have best of both worlds, that is, a commitment size of O(1)H and proof of

membership of O(1)S. We will next describe Merkle tree which takes us near to this.

Commitment Schemes Commitment Size Proof of Membership

Scheme 1 O(1)H O(m)S

Scheme 2 O(m)H O(1)S

Ideal O(1)H O(1)S

Merkle Tree O(1)H O(1)S +O(logm)H

11.2 Merkle Trees

Consider we have m data items, i.e., D1, · · · , Dm.For constructing the Merkle tree, shown in

Fig 11.1, first obtain the hash of each of the items, H1 = H(D1), · · · , H8 = H(D8). Then, for

all i ∈ {1, 2, · · · , m2 }, we obtain H2i−1,2i = H(H2i−1 || H2i). Thus, at a level j ∈ {2, · · · , logm},

we evaluate H(i−1)2j−1+1···i2j−1 = H(H(i−1)2j−1+1···(i−1)2j−1+2j−2 || H(i−1)2j−1+2j−2···i2j−1) for i ∈

{1, · · · , m
2j−1 }. Finally, we get the root of the Merkle tree (called as Merkle root) at the level

j = logm, i.e., H12···m = H(H12···m
2
|| Hm

2
···m).

𝐇𝟏𝟐𝟑𝟒𝟓𝟔𝟕𝟖 = 𝐇(𝐇𝟏𝟐𝟑𝟒 ||𝐇𝟓𝟔𝟕𝟖)

𝐇𝟏𝟐𝟑𝟒 = 𝐇(𝐇𝟏𝟐||𝐇𝟑𝟒) 𝐇𝟓𝟔𝟕𝟖 = 𝐇(𝐇𝟓𝟔||𝐇𝟕𝟖)

𝐇𝟏𝟐 = 𝐇(𝐇𝟏||𝐇𝟐) 𝐇𝟑𝟒 = 𝐇(𝐇𝟑||𝐇𝟒) 𝐇𝟓𝟔 = 𝐇(𝐇𝟓||𝐇𝟔) 𝐇𝟕𝟖 = 𝐇(𝐇𝟕||𝐇𝟖)

𝐇𝟏 𝐇𝟐 𝐇𝟑 𝐇𝟒 𝐇𝟓 𝐇𝟔 𝐇𝟕 𝐇𝟖

𝐃𝟏 𝐃𝟐 𝐃𝟑 𝐃𝟒 𝐃𝟓 𝐃𝟔 𝐃𝟕 𝐃𝟖

Figure 11.1: Merkle Tree for m = 8.

Now, for commitment to m data item D1, · · · , Dm, Alice has to just provide the Merkle root of

the corresponding Merkle. This is of the size H . On the other hand, for providing proof of

membership for a data Di, Alice has to provide to Bob the data Di and all the sibling hashes

encountered in the path of Merkle tree from Hi to the Merkle root. For example, consider the

example illustrated in Fig 11.1 and suppose Alice wants to provide proof of membership for D2

to Bob. Then, Alice has to give D1, H1, H34, H5678. Thus, for Merkle tree, commitment size is

Lecture 11 11-3

O(1)H and the proof of membership is O(1)S +O(logm)H .

11.3 Merkle Trees in Blockchain

Previously, the blocks would contain the transactions which would increase the bandwidth re-

quirement of the network and also require storage of all the transactions of a block in all the

participant nodes. Instead of including all the transactions in the block, only include the merkle

root of the merkle tree for those transactions. The sender of a Tx included in the block only has to

show that Tx and the associated proof of membership in the Merkle tree in order to convince the

recipient of that Tx. This modification introduces the concept of Light nodes which is described in

the next section.

Previous Block Hash

Tx! , Tx" , … , Tx#

Nonce

Block

Previous Block Hash

Merkle	Root

Nonce

Header

Merkle	Root	of		the	Merkle	tree	
for	Tx! , Tx" , … , Tx#

Figure 11.2: Transformation into the chain of headers.

11.3.1 Light Nodes

Considering the transformation illustrated in Fig 11.2, if a header is k−deep in blockchain, then

we know that the transactions contained in the merkle tree referred by the merkle root of that

header is also k−deep and thus is also a confirmed transaction. This fact can be used to describe

a new type of nodes called light nodes (simplified payment validation - SPV) where:

• maintains headers of blocks in blockchains,

• can receive payments securely,

• no need to download the whole block for validation,

• don’t mine blocks.

Lecture 11 11-4

11.3.2 Decoupled Validity

The next question is:

Why not miners also just maintain chain of headers and don’t download the whole blocks, i.e., the

actual transactions?

Previous Block Hash

Merkle	Root

Nonce

𝐇𝐞𝐚𝐝𝐞𝐫𝟏
Previous Block Hash

Merkle	Root

Nonce

Previous Block Hash

Merkle	Root

Nonce

Previous Block Hash

Merkle	Root

Nonce

𝐇𝐞𝐚𝐝𝐞𝐫𝟐

𝐇𝐞𝐚𝐝𝐞𝐫𝟑

𝐇𝐞𝐚𝐝𝐞𝐫𝟒

PoW

Figure 11.3: Chain of headers.

Referring to Fig 11.3, there are two parts to validation:

• PoW and chain structure. This is validating that in each header, correct previous header is

mentioned, appropriate nonce has been described that satisfies the threshold.

• Content validity. While mining a block, the miner doesn’t know whether it is including

double-spending transactions or not as the miner doesn’t know the previous transactions.

One way to get around this problem of content validity is by decoupling these two validations.

All the miners first comes to consensus on the chain structure, i.e., the ordering of the headers.

Then, post-facto, a node can reject double spends using sanitization of the ledger. This sepa-

Lecture 11 11-5

rates/decouples the execution of the transaction from the ordering. Now, we have three types of

nodes:

1. Light Nodes. They just maintain the chain of headers, can receive payments, don’t down-

load whole block, don’t mine blocks.

2. Miners. They do not validate blocks, they mine blocks, they don’t download blocks.

3. Full nodes. They download all blocks and check for validity, they can mine blocks.

Observe that here the mining is very fast as the miner doesn’t have to wait for downloading the

blocks.

11.3.3 Data Availability Problem

𝐇𝟏

𝐇𝟐

𝐇𝟑

𝐇𝟒

𝐇𝟓

𝐇𝟔

𝐁𝟏

𝐁𝟐

𝐁𝟑

𝐁𝟒

𝐁𝟓

𝐁𝟔

𝑻𝒙 missing

Figure 11.4: Data availability problem.

The miner of the block B4 is an adversary and included a fake transaction Tx that no honest node

has heard of. When a full node tries to download the Tx contained in the Merkle tree of the header

H4, no honest node has it and adversarial miner doesn’t reply back. So, now validation via ledger

sanitization in the full node is stuck at block B4 and the blockchain stalls - a liveness problem.

Lecture 11 11-6

This is the data availability problem. Note that you cannot just skip over the missing transactions

because then every node has to agree on this skipping decision and this is just another consensus

problem and in blockchain, the only way to achieve consensus is via the chain.

A simple solution to this problem is by decoupled validation. The miners:

• before mining a block, download all blocks,

• build only on those previous headers for which miners can download blocks

• do not execute transaction.

11.3.4 Joining Problem in Blockchain

When a new node joins the blockchain,

• it queries ` nodes about their respective longest header chain,

• pick the longest chain and download that chain and the associated blocks.

The question is when is this safe?. The answer is as long as 1 out of the ` nodes is honest, the new

node will know about the longest chain. This is called any trust assumption.

