
ECE 595: Foundations of Blockchain Systems November 3, 2020

Lecture 10

Lecturer: Sreeram Kannan Scribe: Milad Fotouhi

Outline: So far we have checked the security of longest chain protocols and as an example we

checked the one that has been deployed by bitcoin. We also talked about safety and liveness

of the longest chain under a general network latency modeling. The throughput and latency of

bitcoin also has been discussed. In this lecture we will revisit throughput and latency to check for

the area and scopes of improvement. We try to solve throughput and latency problem on longest

chain.

We will also explain Prism [2], as an approach which takes the longest chain and converts it

into something much better performing in terms of latency and throughput but still retaining the

security properties.

10.1 Bitcoin Performance

Figure 10.1: Illustration of k-deep policy.

Previously we have discussed that one of the biggest advantages of the longest chain protocol,

10-1



Lecture 10 10-2

particularly Bitcoin, is that it has been secure under an immense threat model that is under an

entire permission-less system and theoretically it is known that it is secure against 50 percent

adversary (this already has been proved in last section). But practically, this has really withstood

the test of time. So there will be no attacks on Bitcoin however, there are other attributes of

bitcoin, which are not as appealing, for example confirmation latency can be in the order of hours.

Also, throughput (how many transactions per second can we process) is in the order of a few

transactions per second. In contrast we can consider Visa or MasterCard, which can support a

throughput of 10, 000 transactions per second with the latency of a few hundred milliseconds.

To understand this better lets recall that when we get a transaction that is accepted into a block,

we do not immediately confirm that transaction because it’s too risky. Our transaction needs to

be deeply embedded into the longest chain for the transaction to be confirmed which is called

the k-deep confirmation policy. As we discussed in section 8 the longer the k is, the better adver-

sary protection. When we increase k, as long as the adversary has less than 50 percent adversity

power, the probability that the adversary can construct more than K blocks faster than the hon-

est notes can construct a block can be calculated. This is a race between two distinct random

variables. Satoshi Nakamoto modeled this in the original Bitcoin paper and this probabilities has

been actually calculated there.

As you can see in the figure 10.1, the table is showing that if we want very high availability, then

we need to wait for K to become equals to 30 blocks. Considering the entire block time in Bitcoin

being 10 minutes then the overall latency here will be 300 minutes. This is the main cost of latency

in bitcoin. This latency is mainly due to two things. One is k which is the confirmation of depth

that the other is intro block arrival which is 10 minutes. Reducing K will reduce reliability, and

if we reduce the arrival time from 10 minutes to several seconds there will be more tries there

will be more forking. Hence, we cannot increase performance without reducing the reliability or

reducing the safety threshold.

As fig.10.2 illustrates, to make our entire block proposal time to be smaller than ∆ we should

have multiple nodes that proposed block simultaneously. Then we will have forking and it leads

to slow growth of the longest chain because even though nine blocks having produced in this

figure, the length has only grown by two. And this is a reduction in the security because now

an adversary who does not even have 50 percent adversarial power can make four blocks during

that time, but they’re all coordinated, which means they’re in the longest chain. Hence, there is a

reduction in the security threshold as you increase the mining rate.



Lecture 10 10-3

Figure 10.2: Bitcoin performance and security trade-off.

10.2 Existing Scalability Approaches

Figure 10.3: Existing scalability approaches

There are a set of existing approaches which have been trying to improve the scalability prob-

lem that include GHOST [1], Inclusive [3], Spectre [6], Phantom [7], Conflux [4] and IOTA Tangle

[5]. However, none of these protocols achieves both provable security and fast latency. There

are also some approaches that convert the problem from a permission-less protocol to permis-

sioned problem. Hybrid consensus, Thunderella, ByzCoin can scale are some examples of these

approaches. The rough idea in these approaches is that you let everybody participate in approval

work so they all can mine blocks. Here the miners of the previous blocks will form a committee,



Lecture 10 10-4

this committee is fixed in size and not prone to any Sybil attack. Now we can run some protocol

inside this committee and convert the permission-less protocol into a permissioned problem. The

permission will be given based on the who min more blocks during the previous stage. So the

miners who have been mining previously now get to propose and form a committee and you just

run a permissioned protocol inside that committee.

10.2.1 Adaptive Adversary

Adaptive adversary is an adversity that knows the entire state of the work, till this point; it can go

on bribe whichever nodes it wants. In a purely mathematical model, we can think of it as the node

can just go and somehow corrupt and control whichever node it wants. In a native permission-

less PoW system, as long as the corrupted group of nodes controls less than 50 percent of the

computing power, the protocol is secure. This is because, in a proof of work system after you

make a block you have no power in the future to change the block. Even an adaptive adversary

can’t bribe the previous miners and change contents of the block. The only hope of the adversity

is it has to bribe or corrupt enough nodes so that it actually controls 50 percent of the compute

power right now.

10.2.2 Permissioned Protocol Vulnerability Against Adaptive Adversary

So as we said these approaches indeed convert the much harder problem, permission-less consen-

sus, into a simpler permissioned consensus problem, but it will make it vulnerable to an adaptive

adversary. Just consider adversity who can bribe the last hundred miners who mine the blocks

and have the future power in this permissioned network. And so adaptive adversity can exploit

this behavior because it can just bribe 50 nodes out of this or this hundred nodes. These hundred

nodes selected for mining were themselves selected out of maybe hundreds of thousands or mil-

lions of nodes. They were selected because they represented a random sub-selection. If originally

20 percent of the mining power is adversarial when you do this kind of random choice roughly 20

percent of the nodes will be adversarial but what adversary is doing is acting after the selection

has happened. Hence, these protocols are not secure against an afterword adversary, which was

a unique strength across the proof of work protocols.



Lecture 10 10-5

10.3 Prism

So far we discussed a bunch of protocols that designed specifically to solve the scaling problem,

but they disrupted the core structure of bitcoin’s longest chain protocol. What we’re looking for

is a native proof-of-work protocol that actually solves the latency network problem and remain

secure under adaptive adversary just like bitcoin. Prism [2], is a new proof-of-work blockchain

protocol, which can achieve security against up to 50 percent adversarial hashing power while

achieving optimal throughput. In order to understand Prism, lets deconstruct Bitcoin into its sub-

components, and then maybe we can put together these components correctly to get something

with a better performance.

10.3.1 Deconstructing the Blockchain to Approach Physical Limits

We should get a core observation of bitcoin and to do that we should know what is the role of

different blocks. The latency of bitcoin is coming form waiting for getting enough votes when

we get enough voters we can confirm a block. An obvious way to solve this latency problem is

to increase the rate of voting, if we make the voting faster then we could potentially confirm a

block fast. But there is a problem, if we want to increase the rate of voting we have to increase

the rate of proposing (rate of voting = rate of proposing) which will break the security due to

excess forking. So, each block in bitcoin is performing a dual role of voting and proposing which

is analogous to an election where every voter is also a candidate.

Lets consider the case where we separate the proposal blocks from voter blocks. With this schema

we can accumulate votes faster. Voter chain doesn’t contain any transaction, they just contain

votes to a particular proposer block. Consider figure 10.4, there are 2 separate proposal blocks

for second page of the ledger at level 2. And the voter chains are voting for these two blocks.

Consider total number of voter chains being 1000 and based on these votes we can decide which

block goes into the ledger. Figure 10.5 is deconstructing the basic blockchain structure into its

atomic functionalities. The selection of the main chain in a blockchain protocol (e.g., the longest

chain in Bitcoin) can be viewed as electing a leader block among all the blocks at each level of

the blocktree, where the level of a block is defined as its distance (in number of blocks) from

the genesis block. Blocks in a blockchain then serve three purposes:they stand for election to

be leaders, they add transactions to the main chain, and they vote for ancestor blocks through

parent link relationships. Here we explicitly separate these three functionalities by representing



Lecture 10 10-6

Figure 10.4: Deconstructing blockchain.

the blocktree in a conceptually equivalent form in Figure10.5 . In this representation, blocks are

divided into three types: proposer blocks, transaction blocks and voter blocks. The voter blocks

vote for transactions indirectly by voting for proposer blocks, which in turn link to transaction

blocks. Proposer blocks are grouped according to their level in the original blocktree, and each

voter block votes for a proposer blocks at a level to select a leader block among them. The elected

leader blocks can then bring in the transactions to form the final ledger. The valid voter blocks

are the ones in the longest chain of the voter tree, and these longest chains maintains the security

of the whole system.

10.3.1.1 Scaling

This alternative representation of the traditional blockchain may seem more complex than the

original blockchain representation but provides a natural path for scaling performance to ap-

proach physical limits. To increase the transaction throughput, one can simply increase the num-

ber of transaction blocks that a proposer block points to without compromising the security of

the blockchain. This number is limited only by the physical capacity of the underlying commu-

nication network. To provide fast confirmation, one can increase the number of parallel voting

trees, voting on the proposal blocks in parallel to increase the voting rate, until reaching the phys-

ical limit of confirming at a high latency and extremely high reliability. Note that even though

the overall block generation rate has increased tremendously, the number of proposal blocks per



Lecture 10 10-7

Figure 10.5: Deconstructing blockchain.

level remains small and manageable, and the voting blocks are organized into many separate

voting chains with low block mining rate per chain and hence little forking.

Figure 10.6: Prism

10.3.1.2 Sortition

There are three types of blocks: transaction, proposer, and voter blocks. Voter blocks are further

sorted into blocks of different voting trees, this can be accomplished by using the random hash

value when a block is successfully mined. This sortition splits the adversary power equally across

the structures and does not allow it to focus its power to attack specific structures.



Lecture 10 10-8

Figure 10.7: Prism sortition

10.3.1.3 How does mining happen?

When you mine a block, you do not know whether you’re going to end up in a proposal chain or

in a voter chain or in which voter chain. Not knowing this a-priori is a very important require-

ment and property of this protocol. When you create a pre-mining block you put in two kinds of

data, one is the voting data containing the votes for proposal blocks and the corresponding parent

blocks for each voter chains. And the other is proposer metadata which contains proof of level

referencing a block from the the previous level of the proposer chain as shown in Figure 10.7. The

Merkle root hash of the voter and proposer metadata serves as a commitment. The range of the

output of the hash function is segregated into groups. If the hash function for the chosen nonce

falls in the first range, then you get the propose a block and if it falls into the second range then

you get to mine a block in the first voter chain and so on. When verifying a block, nodes will only

look at that particular metadata content depending on the hash rate.

10.3.2 Confirmation Policy

Consider figure 10.4 that two blocks on the left have contradictory transactions. the confirmation

policy is not as simple as count the number of votes right now and take a decision, we have to

do something more. In this case if there are 1000 votes and one gets 100 and the other one gets

900 we can relatively be sure that the block with most votes will remain in the lead for future.



Lecture 10 10-9

In case of bitcoin with say you get 80 percent reliability, if one block gets a little bit more than

500 votes, you will never confirm that block because it is likely that it’s a block produced by an

adversary. Now consider that all chains are ready to vote, and each block is stable except for 20

percent probability, then if the a block is legit then out of 1000 vote we expect it gets 800 or more.

Instead of waiting for law of large numbers happening over time we have law of large numbers

happening across the space, and because of this we will have much faster confirmation for this

block. With one interval block arrival at a time you have actually confirmed a proposal block at

very high reliability, so now we don’t have to wait for a lot’s of time to actually aggregate the

voters. So we are essentially using weak protections but many chains in parallel and aggregating

them and using the independence to say that we have gotten our self a strong net protections. In

the longest-chain protocol, for fixed block size and network,the maximum tolerable adversarial

hash power β is governed by the block production rate; the faster one produces blocks, the smaller

the tolerable β. In Prism, we need to be able to tolerate β adversarial hash power in each of

the voter trees and the proposer tree. Hence, following the observations of each of these trees

individually must operate at the same rate as a single longest-chain blocktree in Bitcoin in order

to be secure.The security of Prism is provided by the voter trees; a proposer block is confirmed by

votes which are on the longest chains of these voter trees. Consider a conservative confirmation

policy for Prism, where we wait for each vote on each voter tree to reach a confirmation reliability

1 − ε before counting it. This would requires to wait for each vote to reach a depth of k(ε) in its

respective tree,where k(ε) denotes the confirmation depth for reliability 1 − ε. This conservative

confirmation rule immediately implies that Prism has the same security guarantee as that of each

of the voter tree, i.e. that of Bitcoin.

10.3.2.1 Least Confirmation

There are various properties for Prism, mainly low latency confirmation but there are scenarios

that we can not obtain low latency confirmation. If we have two blocks that both split roughly

equally then we can not be sure that which one should remain in the ledger. So to be sure that we

chose the right one we might need to vote until the last votes. We can’t say which one will remain

in the ledger but we know at least one of them will remain winner. As the blocks get dipper and

dipper we will eventually be able to choose the winner.



Lecture 10 10-10

10.3.2.2 Decoupled validity

A key aspect of Prism is that it has decoupled validating. When you propose a block you do not

know which block is the possible ancestor. This is very different in bitcoin; when you propose

a block in bitcoin it is already inside the chain and you know under which history this block is

going to be passed. So we can not guaranty that all transactions will remain valid after the block

got in. So in Prism we don’t require that all transactions needs to be valid for the block to be valid.

There is question about the schema of the blocks here, when we build a block if we want to float

the block which is only going to be proposal block do we need to contain all the voter metadata?

We can say that there is a subtlety here. The data structure that we use is Merkel tree and what we

use for that Metadata is Merkel root and that allows you to reveal selected subset of data which

comes from and belongs to particular root-hash, we can assert that without showing other data.

References

[1] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Sol-

ida: A blockchain protocol based on reconfigurable byzantine consensus. arXiv preprint

arXiv:1612.02916, 2016.

[2] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. Prism:

Deconstructing the blockchain to approach physical limits. In Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications Security, pages 585–602, 2019.

[3] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols. In

International Conference on Financial Cryptography and Data Security, pages 528–547. Springer,

2015.

[4] Chenxing Li, Peilun Li, Dong Zhou, Wei Xu, Fan Long, and Andrew Yao. Scaling nakamoto

consensus to thousands of transactions per second. arXiv preprint arXiv:1805.03870, 2018.

[5] Serguei Popov, Olivia Saa, and Paulo Finardi. Equilibria in the tangle. Computers Industrial

Engineering, 136:160–172, Oct 2019.

[6] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and scalable cryp-

tocurrency protocol. IACR Cryptol. ePrint Arch., 2016:1159, 2016.



Lecture 10 10-11

[7] Yonatan Sompolinsky and Aviv Zohar. Phantom: A scalable blockdag protocol. IACR Cryptol.

ePrint Arch., 2018:104, 2018.


