Foundations of Blockchain Systems

Lecture 2: Bitcoin

Course: EE 595, Autumn 2020.

Instructor: Sreeram Kannan

University of Washington Seattle

What is a blockchain

Mechanism to coordinate between multiple parties without a trusted intermediary.

Core properties

Immutable: Append-only ledger

Fault tolerant: Functional despite some fraction of nodes being faulty / malicious

Application-level properties

Censorship resistant

Transparency: Each object's history is traceable on the ledger

Truly permissionless operation

Privacy

When not to use a blockchain

- 1. There is a high trust intermediary
 - Run a server
- 2. There are physical aspects to coordination
 - Cannot be assured by the blockchain
- 3. Certifying physical provenance
 - Cannot ensure *correct* data entered into blockchain
- 4. Efficiency is the primary determinant
 - No decentralized system can be more efficient than a centralized system

Applications of Blockchain: Cryptocurrencies

Opinion The New York Times **Bitcoin Has Saved My Family** "Borderless money" is more than a buzzword when you live in a

Borgeriess money is more than a Duzzword when you live in a collapsing economy and a collapsing dictatorship. By Carlos Hernández

Mr. Hernández is a Venezuelan economist Feb. 23, 2019

f y 🛚 🔶 📃

Permissionless

Total Market Cap: 500 Billion USD

Central Bank Digital Currency

Real Time Gross Settlement

Permissioned

Today's Applications beyond Currencies

StableCoins

Lending

Exchange

Decentralized Finance

NBA Collectible

Cryptokitties

Gaming Assets

Digital Collectibles

Projected Applications

registry

Distributed database for storing reference data

Example

Land title Food safety and origin Patent

Example Identity fraud Civil-registry and

identity records Voting

McKinsey&Company

Distributed database with identity-related information

Particular case of static registry treated as a separate group of use cases due to extensive set of identity-specific use cases

Smart contracts

Set of conditions recorded on a blockchain triggering automated, self-executing actions when these predefined conditions are met

Example

Insurance-claim payout Cash-equity trading New-music release

Dynamic registry

Dynamic distributed database that updates as assets are exchanged on the digital platform

Example Fractional investing

Payments infrastructure

Dynamic distributed database that updates as cash or cryptocurrency payments are made among participants

Example Cross-border peer-to-peer payment Insurance claim

Other 6

Use case composed of several of the previous groups

Standalone use case not fitting any of the previous categories

Example Initial coin offering Blockchain as a service

Bitcoin: Case Study

Cryptography background: Hash & Digital Signatures

Adapted from Stanford CS 251 slides [Dan Boneh]

Hash Function

(1) cryptographic hash functions

An efficiently computable function $H: M \rightarrow T$ where $|M| \gg |T|$

Given H(x) "hard" to find x

Collision resistance

<u>Def</u>: a <u>collision</u> for $H: M \to T$ is pair $x \neq y \in M$ s.t. H(x) = H(y)

 $|M| \gg |T|$ implies that <u>many</u> collisions exist

<u>Def</u>: a function $H: M \rightarrow T$ is <u>collision resistant</u> if it is "hard" to find even a single collision for H

Signatures

Physical signatures: bind transaction to author

Problem in the digital world:

anyone can copy Bob's signature from one doc to another

Digital signatures

Solution: make signature depend on document

Digital signatures: syntax

<u>Def</u>: a signature scheme is a triple of algorithms:

- Gen(): outputs a key pair (pk, sk)
- **Sign**(sk, msg) outputs sig. σ
- **Verify**(pk, msg, σ) outputs 'accept' or 'reject'

Secure signatures: (informal)

Adversary who sees signatures on many messages of his choice, cannot forge a signature on a new message.

Families of signature schemes

- 1. <u>RSA signatures (old ... not used in blockchains)</u>:
 - long sigs and public keys (≥256 bytes), fast to verify
- 2. <u>Discrete-log signatures</u>: Schnorr and ECDSA
 - short sigs (48 or 64 bytes) and public key (32 bytes) (Bitcoin, Ethereum)
- 3. <u>BLS signatures</u>: 48 bytes, aggregatable, easy threshold (Ethereum 2.0, Chia, Dfinity)
- 4. <u>Post-quantum</u> signatures: long (≥768 bytes)

Bitcoin

Bitcoin Primer - Mining

Bitcoin Primer – Distributed Mining

Public chain